# Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

Conference Poster

# Critical Review of CO<sub>2</sub> Separation Technologies for Post Combustion Flue Gases

Shiaoguo Chen<sup>1</sup>, Yongqi Lu<sup>2</sup>, Massoud Rostam-Abadi<sup>1,2</sup>

<sup>1</sup> Illinois State Geological Survey
 <sup>2</sup> University of Illinois at Urbana Champaign

May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

#### Issues With Post-Combustion Flue Gases



- Unseen Large Scale
  - CO<sub>2</sub> emission rate (500 MWe PC power plant):
     500 tonne/hour
     or 4 MM tonnes/year
  - Flue gas volume:1.6 million standard cubic meter/hour
- Low product value
  - Currently meaningful scale for emission control is Enhanced Oil Recovery (EOR). Other applications are all to small to match magnitude of power plants Energy intensive

- Low CO2 concentration
  - PC around 10-14 %
  - > IGCC around 10%
  - > NGCC 5%
- Low (atmospheric) pressure
  - Due to huge flue gas volume, it is too expensive to compress to high pressure Table 1 shows the compression work required for a 500 MW power plant
- ☐ Energy Intensive for CO₂ separation
  - > 18 MWe is required minimum separation work.
  - Processes need compression will not be attractive

#### Power required to compress flue gas for a 500 MW PC power plant

| Item                                           | Conditions                                         | Power Requirement |  |
|------------------------------------------------|----------------------------------------------------|-------------------|--|
|                                                |                                                    | (MW)              |  |
| Flue Gas Compression<br>(compressed to 10 atm) | One stage (1 to 10), no cooling                    | 194               |  |
|                                                | Two stages (1 to 3, 3 to 10), cooling inter-stages | 155               |  |
|                                                | Ideal gas, isothermal compression                  | 145               |  |
| Power loss due to compression                  | r loss due to compression                          |                   |  |

# Minimum Separation Work



Based on the 2<sup>nd</sup> law of thermodynamics, minimum separation energy:

$$W_{\min,T} = -RT \left( \sum_{j} x_{jF} \ln(\gamma_{jF} x_{jF}) - \sum_{i} \phi_{i} \sum_{j} x_{ji} \ln(\gamma_{ji} x_{ji}) \right)$$

Where  $\phi_i$ : molar fraction of product i;

 $\gamma_{ii}$ : activity coefficient of component j in product i;

 $X_{ii}$ : mole fraction of component j in product i;

 $x_{jF}$ : mole fraction of component in feed

Minimum separation work for CO<sub>2</sub> separation Assuming: T=330 K (135 F), 12 vol% CO<sub>2</sub> in flue gas

#### Note:

Minimum separation work is a useful concept for separation processes that only use mechanical work. For separation processes which use heat the concept is not well defined since energy and work are not equal



# Energy Flow in a Typical PC power plant





- □ About 51% of the heat input is released during condensation of the low pressure exhaust steam (1.2 psi, 103 °F) in the Water Cooling Tower
- ☐ Heat within the steam cycle temperature (between 103 to 1000 °F for PC power plant) has different quality. Higher temperature will have higher potential to produce electricity
- ☐ All the heat above the highest temperature in the steam cycle (1000 °F for PC power plant) will have same quality.
- Any separation process which operates within the steam cycle temperatures (between 103 to 1000 °F for PC power plant), the one with the lower operating temperature is preferable.
- Any separation process which operates in a temperature range above steam cycle temperature (1000 °F for PC power plant) will not impact the energy efficiency of the power plant.

# Energy Efficiency of Steam for Electricity Generation





- Steam required in a typical amine base process is around 400 °F and has about 20% heat efficiency for electricity
- If the desorption process can take place at a temperature close to the exhaust steam temperature then the electricity loss due to steam extraction will be minimized

# **Typical Separation Process**





#### Separation processes

- > Equilibration processes
  - Multi-stage in one vessel,
  - Low separation factor is acceptable
  - Examples: evaporation, distillation, absorption and liquid extraction
- Rate-governed processes
  - One or two stages
  - Different stage has to be in different separation device
  - Example: membrane processes

#### Separating agent

- Energy: distillation, evaporation
  - Needs one separation device and usually is the best option for separation processes
- Matter: absorption, extraction
  - needs two or more separation devices due to recovery of the matter,
  - Possible corrosion, contamination, environmental issues

# **Absorption Processes**



- ☐ Is an equilibration process
  - Easily multi-staged (high overall separating factor) if necessary
  - Since can be multi-staged, so high product purity and product recovery can be easily achieved
- ☐ Uses mass as separating-agents
  - Two separation devices are required: absorption and desorption
  - Possible corrosion and secondary contamination by the solvent
- ☐ Is a gas-liquid system
  - ➢ It is easy to handle gas and liquid in continuous operation
  - Operating temperature is limited by the vapor pressure of the solvent and usually is operated at low temperature

- ☐ Is a well understood process
  - ➤ Industry has gained rich experience and it is easy to scale up the process from bench scale to industrial scale
- ☐ Large scale operation
  - ➤ Wet FGD processes are large scale absorption processes. The difference is the scales between CO₂ and SO₂ but the flue gas volumes are the same
- Inexpensive equipment
  - Absorption column (such as packed bed) is relative inexpensive to build
- Best option for CO<sub>2</sub> separation from post-combustion flue gases

# **Absorption Processes**



#### Characteristics of an ideal solvent

- ☐ High CO₂ absorption capacity on the per weight solvent bases that can be achieved by using low molecular weigh or increase the stoichiometric ratio (mole ratio of solvent to CO₂)
- Low vapor pressure (high boiling point) of the solvent so that solvent loss and secondary contamination of the flue gas can be prevented
- ☐ Low heat of absorption
  - reducing heat of absorption will reduce heat (steam) requirement

- Low △T=Tdesorption-Tabsorption, which will reduce the sensible heat
- ☐ Low operating temperature (low Tdesorption)
  - Will be able to use low quality steam and reduce electricity loss
- □ Other characteristics:
  - resist to contaminants such as SOx, NOx
  - > low cost,
  - > no corrosion,
  - > non toxic,
  - > easy handling

# **Adsorption Processes**



- Is an equilibration process
  - Easily multi-staged (high overall separating factor) if necessary
  - ➤ Since can be multi-staged, so high product purity and product recovery can be easily achieved
- ☐ Uses mass-separating-agent
  - ➤ Two separated steps are required: adsorption and desorption with adsorption to separate CO₂ and desorption to regenerate the mass separating agent

- ☐ Is a gas-solid system
  - Difficult for continuous operation
- Operating temperature is limited by the thermal stability of the sorbent
- Adsorption is suitable for trace elements removal from bulk gases but not suitable for bulk separation such as CO₂ removal from
- Well-understood process and large scale operation is possible unless large amount of heat generation is involved

# Adsorption Processes --Fixed Bed, TSA or PSA



Batch type of fixed bed adsorption process is suitable for trace elements removal, where the sorbent regeneration time is only a small portion of the whole batch cycle time. When the sorbent regeneration time is a large portion of the batch cycle time, the economic performance of the adsorption process will be strongly impacted.

The table below shows the results for a 500 MW power plant with  $CO_2$  emission rate of 500 metric tonnes/hour. It is also assumed that sobent capacity usage in the adsorption column is 80%.

■ Note: pure VSA is not practical if high CO₂ recovery is desired due to the pressure drop along the adsorption column

Number of adsorption columns required for adsorption processes for a 500 MW PC power plant

| Operating Configuration | Column<br>diameter<br>(m) |    | Capacity<br>(gCO <sub>2</sub> /g<br>sorbent) | Cycle time<br>(hour) | Sorbent Packing<br>Density<br>(g/cm³) | # of<br>Column<br>required |
|-------------------------|---------------------------|----|----------------------------------------------|----------------------|---------------------------------------|----------------------------|
| Fixed bed TSA           | 3.1                       | 32 | 0.1                                          | 2                    | 0.8                                   | 58                         |
| PSA and VSA             | 3.1                       | 32 | 0.1                                          | 0.4                  | 0.8                                   | 12                         |

# Fluidized bed Adsorption



#### Circulated fluidized bed or entrained bed

Fluidized bed is the only possible configuration for adsorption process.

The potential problems are:

- It operates co-currently which will reduce mass transfer driving force and increase energy consumption
- ☐ Attrition of the sorbent



Minimum separation work will increase when the co-current configuration is used (assuming a 90% recovery rate)

# **Membrane Separation Process**



- ☐ Is a rate-governed process
  - Usually is one or two staged
  - Requires a high selectivity
  - Trade off between product purity and product recovery rate
- ☐ Use energy as separating-agent
  - Pressure is the separation driving force
  - Compression of the feed gas is needed to achieve higher recovery rate
- Gas or liquid (usually one phase system)
  - > easy for continuous operation
- Operating temperature is determined by the membrane thermal stability
  - High temperature is possible
- □ Requires gas pre-treatment (liquid, mist, particulates, trace contaminants, heating)

- Advantages:
  - > Compact equipment size
  - Easy to scale up due to its module nature
  - > Little maintenance
- Disadvantages
  - > Expensive equipment cost
  - > Low recovery rate
  - > Often requires pre-treatment
  - ➤ To produce pipeline transportation ready CO<sub>2</sub> will reduce recovery rate
  - > Needs compression
  - > Energy intensive
    - A one-staged membrane process with 90% CO<sub>2</sub> recovery requires minimum separation work of around 36MWe

# Membrane Separation Process





Current economic performance of membrane separation process and its required quality to compete with current MEA processes

#### Note:

- ☐ Current MEA
  process is still too
  expensive and
  needs to be
  improved
- □ Selectivity and permeability of a membrane is often reversely correlated. Very difficult to increase both at the same time

# Membrane Technology





Trade-off between product purity and product recovery rate for a single staged membrane separation process

In the Figure: a is the selectivity (CO<sub>2</sub>/N<sub>2</sub>) of the membrane and R is the pressure ratio between retentate side and permeate side

Note: for pipeline transportation the CO<sub>2</sub> purity is at least 95%. Obviously, the recovery rate will be very low unless a second stage is added, which will increase the compression work

# Cryogenic Process



- ☐ Is an equilibration process
  - Easily be operated in multistaged mode (high overall separation factor)
  - High product purity and high product recovery can be easily achieved
- ☐ Uses energy as separating-agent
  - Only one separating devise is required
- ☐ Is a vapor-liquid system
  - > easy for continuous operation
  - Process has to be operated in vapor-liquid zone of the phase diagram
- □ Operating temperature is limited by the volatility of all the flue gas components combined

#### Advantages

- □ Product CO₂ is in liquid state and needs no further compression
- ☐ High purity CO₂ and is pipeline transportation ready
- ☐ High recovery rate

#### Disadvantages

- The lowest pressure required to recover any CO₂ is around 50 bar and at a temperature of around -57 C. To recover 90% of CO₂, as high as 347 bar pressure may be needed
- Power loss due to the compression and expanding (to recover compression work) of the flue gas will very high
- All the water in the flue gas has to be removed to prevent the blockage of the system

#### **Cryogenic Process**



Cryogenic process has to be operated in the vapor-liquid phase zone between the triple point and the critical point and the flue gas conditions have to be changed from point 10 to 2 in the figure



#### PC plant:

- Flue gas: P<sub>CO2</sub> = 0.10 Bar, P=1 Bar, 60 °C
- lowest pressure to reach vapor-liquid zone will be close to -57 °C and 50 Bar

#### **Conclusions**



- Any separation processes that need compression of the flue gas will not be attractive
- Absorption processes
  - ➢ Best options for postcombustion CO₂ separation
- Adsorption processes
  - Fixed bed configuration is unpractical
  - PSA and VSA process are unlikely
  - Fluidized bed is the only configuration

- Membrane process
  - Uses high pressure operation is unpractical
  - Use vacuum at the permeate side is the best option
  - Increase the permeability is the key
  - absorption/membrane Hybrid process
- ☐ Cryogenic process
  - Needs high pressure and low temperature
  - ➤ Not practical for CO<sub>2</sub> separation from post-combustion flue gases